대구경북과학기술원(DGIST) 로봇및기계전자공학과 박상현 교수팀이 의료영상에 특화된 AI(인공지능) 모델 기술을 개발했다고 19일 밝혔다.
이 기술은 의료영상이 서로 다른 스캐너나 다른 환경에서 취득되더라도 성능이 저하되지 않고 정확한 분석이 가능하다. 특히 영상의 특성이 바뀔 때마다 새롭게 학습데이터를 구축하고 레이블을 제작했던 기존 방식보다 시간, 비용이 절감돼 의료 분야에 상당한 기여를 할 것으로 보인다.
의료 AI의 경우 학습에 사용된 이미지 양식과 다른 이미지가 모델에 입력되면 성능이 크게 하락하는 일이 빈번하게 일어난다. 예를 들면, A사의 스캐너로 취득된 MRI 데이터로 학습된 모델에 B사 스캐너로 취득한 MRI 데이터가 입력되면 성능이 하락할 수 있다.
또 CT와 MRI 등 다중 모달리티(여러 유형의 정보나 데이터) 영상을 취득하기 어려운 경우에도 CT 영상으로부터 MRI로 변환한 데이터셋을 생성해 더 정확한 분석을 할 수 있다.
최근 이미지의 스타일을 변화시켜주는 연구들이 제안되고 있지만, 대부분 일반영상의 스타일 변환에 집중하고 있어 이미지 변환 시 종종 구조변형이 나타난다. 하지만 정확한 진단을 위해 활용하는 의료영상에서는 장기나 혈관, 병변 등의 구조적인 변형이 일어나서는 안 된다.
이에 따라 의료영상의 정확한 분석을 위해서는 성능저하 방지 및 구조적 변형 최소화를 위한 기술 개발이 필요하다.
박 교수팀은 이미지 변환 작업을 진행할 때 '상호 정보 오류함수'를 활용, 이미지 구조변형을 최소화할 수 있는 기술을 개발했다. 상호 정보 오류함수는 작은 구조의 변형도 민감하게 잡아낼 수 있고, 이를 활용해 작은 구조적 변형도 막는 이미지 변환을 가능케 한다.
연구팀이 개발한 기술은 의료영상 이미지의 구조 정보와 새로운 도메인의 이미지에서 질감 정보를 추출하고, '판별자 오류함수(실제 이미지와 생성된 이미지를 구별하는 판별자를 사용해 오류를 계산하는 것)'를 활용해 사실적인 이미지를 생성한다.
그리고 새로운 도메인의 질감 정보를 유지하면서 구조변형이 적은 이미지를 생성하기 위해 '질감 동시 발생 오류함수', '상호 정보 오류함수' 등을 활용한다.
개발한 기술을 이용하면 새로운 도메인의 이미지를 생성할 수 있고, 이렇게 생성된 이미지들을 함께 이용해 딥러닝 모델을 학습하면 도메인 적응이 가능해진다.
연구팀은 해당 기술을 활용해 여러 기관에서 수집한 안저(안구 속의 뒷부분) 영상, 전립선 MRI, 심장 CT와 MRI 영역화를 위해 서로 다른 모달리티 이미지를 각각 반대로 생성하게 해 도메인 적응을 수행했다. 그 결과 해당 기술을 통해 구조를 유지하면서 모달리티가 다른 이미지를 잘 생성할 수 있음을 확인했다. 또 기존의 도메인 적응 및 이미지 변환 기법과 비교했을 때 보다 우수한 성능을 나타낸다는 것을 확인했다.
박 교수는 "이번 연구를 통해 의료 분야에서 도메인이 바뀔 때마다 새롭게 인공지능 모델을 학습하는 데 드는 시간과 비용을 획기적으로 줄일 수 있는 기술을 개발했다"며 "해당 기술이 여러 의료현장에서 범용적으로 활용가능한 진단소프트웨어 개발에 크게 기여할 것으로 기대한다"고 말했다.
[머니투데이 스타트업 미디어 플랫폼 '유니콘팩토리']
이 기술은 의료영상이 서로 다른 스캐너나 다른 환경에서 취득되더라도 성능이 저하되지 않고 정확한 분석이 가능하다. 특히 영상의 특성이 바뀔 때마다 새롭게 학습데이터를 구축하고 레이블을 제작했던 기존 방식보다 시간, 비용이 절감돼 의료 분야에 상당한 기여를 할 것으로 보인다.
의료 AI의 경우 학습에 사용된 이미지 양식과 다른 이미지가 모델에 입력되면 성능이 크게 하락하는 일이 빈번하게 일어난다. 예를 들면, A사의 스캐너로 취득된 MRI 데이터로 학습된 모델에 B사 스캐너로 취득한 MRI 데이터가 입력되면 성능이 하락할 수 있다.
또 CT와 MRI 등 다중 모달리티(여러 유형의 정보나 데이터) 영상을 취득하기 어려운 경우에도 CT 영상으로부터 MRI로 변환한 데이터셋을 생성해 더 정확한 분석을 할 수 있다.
최근 이미지의 스타일을 변화시켜주는 연구들이 제안되고 있지만, 대부분 일반영상의 스타일 변환에 집중하고 있어 이미지 변환 시 종종 구조변형이 나타난다. 하지만 정확한 진단을 위해 활용하는 의료영상에서는 장기나 혈관, 병변 등의 구조적인 변형이 일어나서는 안 된다.
이에 따라 의료영상의 정확한 분석을 위해서는 성능저하 방지 및 구조적 변형 최소화를 위한 기술 개발이 필요하다.
박 교수팀은 이미지 변환 작업을 진행할 때 '상호 정보 오류함수'를 활용, 이미지 구조변형을 최소화할 수 있는 기술을 개발했다. 상호 정보 오류함수는 작은 구조의 변형도 민감하게 잡아낼 수 있고, 이를 활용해 작은 구조적 변형도 막는 이미지 변환을 가능케 한다.
연구팀이 개발한 기술은 의료영상 이미지의 구조 정보와 새로운 도메인의 이미지에서 질감 정보를 추출하고, '판별자 오류함수(실제 이미지와 생성된 이미지를 구별하는 판별자를 사용해 오류를 계산하는 것)'를 활용해 사실적인 이미지를 생성한다.
그리고 새로운 도메인의 질감 정보를 유지하면서 구조변형이 적은 이미지를 생성하기 위해 '질감 동시 발생 오류함수', '상호 정보 오류함수' 등을 활용한다.
개발한 기술을 이용하면 새로운 도메인의 이미지를 생성할 수 있고, 이렇게 생성된 이미지들을 함께 이용해 딥러닝 모델을 학습하면 도메인 적응이 가능해진다.
연구팀은 해당 기술을 활용해 여러 기관에서 수집한 안저(안구 속의 뒷부분) 영상, 전립선 MRI, 심장 CT와 MRI 영역화를 위해 서로 다른 모달리티 이미지를 각각 반대로 생성하게 해 도메인 적응을 수행했다. 그 결과 해당 기술을 통해 구조를 유지하면서 모달리티가 다른 이미지를 잘 생성할 수 있음을 확인했다. 또 기존의 도메인 적응 및 이미지 변환 기법과 비교했을 때 보다 우수한 성능을 나타낸다는 것을 확인했다.
박 교수는 "이번 연구를 통해 의료 분야에서 도메인이 바뀔 때마다 새롭게 인공지능 모델을 학습하는 데 드는 시간과 비용을 획기적으로 줄일 수 있는 기술을 개발했다"며 "해당 기술이 여러 의료현장에서 범용적으로 활용가능한 진단소프트웨어 개발에 크게 기여할 것으로 기대한다"고 말했다.
[머니투데이 스타트업 미디어 플랫폼 '유니콘팩토리']
'대구경북과학기술원' 기업 주요 기사
- 기사 이미지 DGIST 이건우 총장 '대한민국 올해의 기계인' 선정
- 기사 이미지 몸속에 심은 '생명줄' 카테터 잘 고정됐을까…섬유형 센서가 탐지
- 기사 이미지 '마이너리티 리포트' 현실로...특수장갑·착용로봇 만든 K-스타트업
관련기사
- 해양산업 어벤져스 뭉쳤다...'오션테크 창업허브' 꿈틀
- 과학기술정보협의회 지능형 허브 플랫폼 구축...DX 기술·수요 매칭
- "탈부산 막자"…매출 5억→63억 대박 '창업 성지'로 뜨는 영도
- "의료기기·헬스케어산업 키우자"...'메디테크 오픈이노베이션' 개막
- "미래식품산업 이끌 인재 키운다"…포스텍 '푸드테크융합전공' 개설
- 기자 사진 류준영 차장 joon@mt.co.kr 다른 기사 보기
<저작권자 © ‘돈이 보이는 리얼타임 뉴스’ 머니투데이. 무단전재 및 재배포, AI학습 이용 금지>